解答题设?f(x)=x3-6x+5求函数f(x)的单调区间及其极值.

发布时间:2020-07-09 01:36:16

解答题设?f(x)=x3-6x+5求函数f(x)的单调区间及其极值.

网友回答

解:由?f(x)=x3-6x+5,得:.
由,得:x=或x=.
列表:

由表可知,函数的增区间为,,减区间为.
当x=-时函数取得极大值;当x=时函数取得极小值.解析分析:求出原函数的导函数,求出导函数的零点,把函数的定义域分段,判断导函数在各段内的符号,从而得到原函数的单调区间,根据在各区间内的单调性求出极值点,把极值点的横坐标代入函数解析式求得函数的极值.点评:本题考查了利用导函数研究函数的单调性,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.考查了函数在某点取得极值的条件,连续函数在函数定义域内某点处左右两侧的单调性不同,则该点是函数的极值点.此题是中档题.
以上问题属网友观点,不代表本站立场,仅供参考!