对于四面体ABCD,给出下列四个命题
①若AB=AC,BD=CD,则BC⊥AD;
②若AB=CD,AC=BD,则BC⊥AD;
③若AB⊥AC,BD⊥CD,则BC⊥AD;
④若AB⊥CD,BD⊥AC,则BC⊥AD.
其中真命题的序号是 ________.(写出所有真命题的序号)
网友回答
①④
解析分析:证明线线垂直一般采用线面垂直来证线线垂直.①的证明可转借化证明BC⊥面AHD.④的证明可转化为证垂心,然后再证明BC⊥面AED来证明BC⊥AD.②③条件下不能求出两线的夹角,也无法保证一个线垂直于另一个线所在的平面,故不对.
解答:证明:如图对于①取BC的中点H,连接AH与DH,可证得BC⊥面AHD,进而可得BC⊥AD,故①对;对于②条件不足备,证明不出结论;对于③条件不足备,证明不出结论;对于④作AE⊥面BCD于E,连接BE可得BE⊥CD,同理可得CE⊥BD,证得E 是垂心,则可得得出DE⊥BC,进而可证得BC⊥面AED,即可证出BC⊥AD.综上知①④正确,故应填①④.
点评:本题在判断时有一定的难度,需要构造相关的图形,在立体几何中,构造法是一个常 用的方法,本题用其来将线线证明转化线面证明,