已知α、β是锐角,,且满足3sinβ=sin(2α+β).(1)求证:tan(α+β)=2tanα(2)求tanβ的最大值,并求取得最大值时tanα的值.

发布时间:2020-07-31 12:25:38

已知α、β是锐角,,且满足3sinβ=sin(2α+β).
(1)求证:tan(α+β)=2tanα
(2)求tanβ的最大值,并求取得最大值时tanα的值.

网友回答

解:(1)证明:由3sinβ=sin(2α+β)得:
3sin[(α+β)-α]=sin[(α+β)+α]
?3sin(α+β)cosα-3cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα
?sin(α+β)cosα=2c0s(α+β)sinα
∵知α、β是锐角,,
∴?tan(α+β)=2tanα
(2)因为tanβ=tan[(α+β)-α]===
又因为α是锐角
所以+2tanα≥2=2,当且仅当时取等号,此时tanα=.
故tanβ≤=.
所以:当时,
解析分析:(1)把条件3sinβ=sin(2α+β)中的角都用所要证明的结论中的角表示为3sin[(α+β)-α]=sin[(α+β)+α];再利用两角和与差的正弦公式展开,整理即可证明结论.(2)先由(1)得tanβ=tan[(α+β)-α]===,再利用基本不等式求出分母的最值;即可求出tanβ的最大值,并求出其取最大值时tanα的值.

点评:在三角恒等式的证明中,一般都是把已知条件与所证结论相结合,即要看条件,又要分析条件和结论之间的关系.
以上问题属网友观点,不代表本站立场,仅供参考!