解答题(文科)(1)若数列{an1}是数列{an}的子数列,试判断n1与l的大小关系;

发布时间:2020-07-09 07:56:09

解答题(文科)(1)若数列{an1}是数列{an}的子数列,试判断n1与l的大小关系;
(2)①在数列{an}中,已知{an}是一个公差不为零的等差数列,a5=6.当a3=2时,若存在自然数n1,n2,…,nl,…满足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…是等比数列,试用t表示n1;
②若存在自然数n1,n2,…,nl,…满足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…构成一个等比数列.求证:当a3是整数时,a3必为12的正约数.

网友回答

解(1)∵数列{an1}是数列{an}的子数列
∴nt≥t;
(2)①因为,
从而nt≥tan=a5+(n-5)d=2n-4,
又a3,a5,a7,a9…an…是等比数列,
所以公比q=
所以

所以2nt-4=2?3t+1
所以nt=3t+1+2
②因为成等比数列,所以,即=
又{an}是等差数列,所以=
所以=即,
所以,因为6-a3≠0
所以解得.
因为n1是整数,且n1>5所以是正整数,从而整数a3必为12的正约数.解析分析:(1)利用数列{an1}是数列{an}的子数列,判断出nt≥t(2)①求出数列{an}的公差,利用等差数列的通项公式求出数列an,求出数列{an1}的公比;利用是数列{an}的第nt项求出值同时是数列{an1}的第t项利用等比数列的通项公t表示n1式求出值,两个方法求出的值相等,列出方程得到nt=3t+1+2.②分别通过两个数列表示出同一个项,列出关于a3,n1的方程,据各个数的特殊性,证出结论.点评:在解决同一个项分别充当两个不同数列的项,关键是判断出其分别是两个数列的项数,然后利用不同的通项公式表示出其值,列出方程,找关系.
以上问题属网友观点,不代表本站立场,仅供参考!