解答题已知函数.(1)?判断并证明函数f(x)的奇偶性(2)判断并证明当x∈(-1,1

发布时间:2020-07-09 07:55:49

解答题已知函数.
(1)?判断并证明函数f(x)的奇偶性
(2)判断并证明当x∈(-1,1)时函数f(x)的单调性;
(3)在(2)成立的条件下,解不等式f(2x-1)+f(x)<0.

网友回答

解:(1)∵y=x2+1为偶函数,y=x为奇函数
根据函数奇偶性的性质,我们易得
函数为奇函数.
(2)当x∈(-1,1)时
∵函数
f'(x)=>0恒成立
故f(x)在区间(-1,1)上为单调增函数;
(3)在(2)成立的条件下,不等式f(2x-1)+f(x)<0可化为:

解得:
∴不等式的解集为.解析分析:(1)由于函数的定义域为R,关于原点对称,故我们可利用函数奇偶性的性质判断方法来解答问题;(2)由函数f(x)的解析式,我们易求出原函数的导函数的解析式,结合x∈(-1,1),确定导函数的符号,即可判断函数的单调性;(3)结合(1)、(2)的结论,我们可将原不等式转化为一个关于x的不等式组,解不等式组即可得到
以上问题属网友观点,不代表本站立场,仅供参考!