已知不等式x2+mx+m>0对于任意的x都成立,则m的取值范围是
A.((-∞,0]∪[4,+∞)
B.[0,4]
C.(-∞,0)∪(4,+∞)
D.(0,4)
网友回答
D解析分析:将不等式x2+mx+m>0恒成立转化为函数y=x2+mx+m的函数值恒大于0,利用开口向上的函数与x轴无交点即可.解答:设y=x2+mx+m∵不等式x2+mx+m>0对于任意的x都成立∴对?x∈R,y>0恒成立∴△=m2-4m<0∴0<m<4故选D点评:本题的关键在于“转化”,先将不等式恒成立转化为函数恒成立问题,再利用二次函数与x轴无交点解决问题.