填空题已知F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为________.
网友回答
解析分析:根据双曲线的定义可求得a=1,∠ABF2=90°,再利用勾股定理可求得2c=|F1F2|,从而可求得双曲线的离心率.解答:∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,∵|AB|2+|BF2|2=|AF2|2,∴∠ABF2=90°,又由双曲线的定义得:|BF1|-|BF2|=2a,|AF2|-|AF1|=2a,∴|AF1|+3-4=5-|AF1|,∴|AF1|=3.∴|BF1|-|BF2|=3+3-4=2a,∴a=1.在Rt△BF1F2中,|F1F2|2=|BF1|2+|BF2|2=62+42=52,∵|F1F2|2=4c2,∴4c2=52,∴c=.∴双曲线的离心率e==.故