函数f(x)=ax2+bx+c(a>0)对于任意的x∈R有f(1-x)=f(1+

发布时间:2020-07-09 04:46:45

函数f(x)=ax2+bx+c(a>0)对于任意的x∈R有f(1-x)=f(1+x),则f(2x)与f(3x)的大小关系是













A.f(3x)≥f(2x)












B.f(3x)≤f(2x)











C.f(3x)<f(2x)











D.大小不确定

网友回答

A解析分析:由函数f(x)=ax2+bx+c(a>0)对于任意的x∈R有f(1-x)=f(1+x)可得函数关于x=1对称,由a>0可得函数在(∞,1]单调递减,在[1,+∞)单调递增,而当x>0时,3x>2x>1,当x=0时,3x=2x=1,当x<0时,3x<2x<1,从而可判断解答:由函数f(x)=ax2+bx+c(a>0)对于任意的x∈R有f(1-x)=f(1+x)可得函数关于x=1对称由a>0可得函数在(∞,1]单调递减,在[1,+∞)单调递增当x>0时,3x>2x>1,f(3x)>f(2x)当x=0时,3x=2x=1,f(3x)=f(2x)当x<0时,3x<2x<1,f(3x)>f(2x)综上可得,f(3x)≥f(2x)故选A点评:本题主要考查了结合二次函数的性质(若f(a+x)=f(a-x)则函数关于x=a对称)的对称性,单调性及指数函数的性质的应用,属于综合性试题.
以上问题属网友观点,不代表本站立场,仅供参考!