如图,BD是正方形ABCD的对角线,的圆心是A,半径为AB,正方形ABCD以AB为轴旋转一周,求图中Ⅰ、Ⅱ、Ⅲ三部分旋转所得旋转体的体积之比.

发布时间:2020-08-01 03:11:16

如图,BD是正方形ABCD的对角线,的圆心是A,半径为AB,正方形ABCD以AB为轴旋转一周,求图中Ⅰ、Ⅱ、Ⅲ三部分旋转所得旋转体的体积之比.

网友回答

解:设正方形ABCD的边长为1,可得
图Ⅰ旋转所得旋转体为以AB为轴的圆锥体,高AB=1且底面半径r=1
∴该圆锥的体积为V1=π×AD2×AB=π;
图II旋转所得旋转体,是以AB为半径的一个半球,减去图Ⅰ旋转所得圆锥体而形成,
∴该圆锥的体积为V2=×π×AB2-V1=π-π=π;
图III旋转所得旋转体,是以AB为轴的圆柱体,减去图II旋转所得半球而形成,
∴该圆锥的体积为V3=π×AD2×AB-V半球=π-π=π
综上所述V1=V2=V3=π,
由此可得图中Ⅰ、Ⅱ、Ⅲ三部分旋转所得旋转体的体积之比为1:1:1.

解析分析:设正方形ABCD的边长为1,可得图Ⅰ旋转所得圆锥的体积为V1=π.图II旋转所得旋转体是半球与图Ⅰ旋转所得圆锥的差,因此它的体积V2=V半球-V1=π.图III旋转所得旋转体是圆柱与半球的差,因此它的体积V3=V圆柱-V半球=π,由此即可得到三部分旋转所得旋转体的体积之比.

点评:本题给出正方形ABCD被圆弧分成的三部分,求它们旋转而成的几何体的体积之比,着重考查了圆柱、圆锥和球的体积公式等知识,属于基础题.
以上问题属网友观点,不代表本站立场,仅供参考!