解答题已知向量=(sinA,sinB),=(cosB,cosA),=sin2C,且A、B、C分别为△ABC三边a、b、c所对的角.
(1)求角C的大小;
(2)若sinA、sinC、sinB成等差数列,且sinB=18,求c边的长.
网友回答
解:(1)由于 ,…(2分)
对于△ABC,A+B=π-C,0<C<π,∴sin(A+B)=sinC,∴.…(3分)
又∵,∴.…(6分)
(2)由sinA,sinC,sinB成等差数列,得2sinC=sinA+sinB,
由正弦定理得2c=a+b.…(8分)∵,即abcosC=18,ab=36.…(10分)
由余弦弦定理c2=a2+b2-2abcosC=(a+b)2-3ab,…(11分)
∴c2=4c2-3×36,c2=36,∴c=6.…(12分)解析分析:(1)利用两个向量的数量积公式求得,再由已知,可得从而求得C的值.(2)由sinA,sinC,sinB成等差数列,得2sinC=sinA+sinB,由条件利用正弦定理、余弦定理求得c边的长.点评:本题主要考查等差数列的性质,查两个向量的数量积公式、正弦定理、余弦定理的应用,属于中档题.