解答题已知多面体ABCDE中,AB⊥平面ACD,DE∥AB,AB=1,AC=AD=CD

发布时间:2020-07-09 00:53:55

解答题已知多面体ABCDE中,AB⊥平面ACD,DE∥AB,AB=1,AC=AD=CD=DE=2,F为CE的中点.
(I)求证:AF⊥CD;
(II)求平面ACD与平面BCE夹角的大小;
(III)求多面体ABCDE的体积.

网友回答

证明:(I)取CD的中点O,连接AO、OF,则OF∥DE
∵AC=AD,
∴AO⊥CD
∵DE∥AB
∴DE⊥平面ACD
∴DE⊥CD,OF⊥CD,又AO∩OF=O
∴CD⊥平面AOF
∵AF?平面AOF
∴AF⊥CD.(4分)
解:( II)以O为坐标原点,分别以OF、OD、OA为x轴、y轴、z轴建立空间坐标系,如图
所以,,
设是平面BCE的一个法向量,
由得取,(6分)
易知是平面ACD的一个法向量,

于是平面ACD与平面BCE的夹角等于.(8分)
(III)作CG⊥AD于G,可知CG是C-ABED的高h,易求,(10分)
(12分)解析分析:(I)取CD的中点O,连接AO、OF,则OF∥DE,结合AC=AD=CD=DE=2,DE∥AB,我们易得到DE⊥平面ACD,进而得到CD⊥平面AOF,由线面垂直的性质,我们可以得到AF⊥CD;(II)以O为坐标原点,分别以OF、OD、OA为x轴、y轴、z轴建立空间坐标系,求出各个顶点的坐标,进而求出平面ACD的法向量与平面BCE的法向量,代入向量夹角公式,即可得到平面ACD与平面BCE夹角的大小;(III)作CG⊥AD于G,可知CG是C-ABED的高,求出棱锥的底面面积和高,代入棱锥的体积公式,即可得到
以上问题属网友观点,不代表本站立场,仅供参考!