已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE与⊙O相切,交CB的延长线于E.(1)判断直线AC和DE是否平行,并说明理由;(2

发布时间:2020-07-30 00:06:51

已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE与⊙O相切,交CB的延长线于E.
(1)判断直线AC和DE是否平行,并说明理由;
(2)若∠A=30°,BE=1cm,分别求线段DE和的长(直接写出最后结果).

网友回答

(1)答:直线AC和DE平行.
理由是:
连接OD,∵DE与⊙O相切,
∴OD⊥DE.
∵OB=OD,
∴∠ODB=∠OBD,
∵BD是∠ABE的平分线,
即∠ABD=∠DBE,
∴∠ODB=∠DBE,
∴OD∥BE.
∴BE⊥DE,即DE⊥CE,
∵AB是⊙O的直径,点C在⊙O上,
∴AC⊥CE,
∴AC∥DE.

(2)答:线段DE的长是,的长是.
解析分析:(1)平行.连接OD,∵DE与⊙O相切,得出OD⊥DE.根据BD是∠ABE的平分线,推出∠ODB=∠DBE,得到OD∥BE.推出BE⊥DE,根据AB是⊙O的直径,得到AC⊥CE,即可推出
以上问题属网友观点,不代表本站立场,仅供参考!