如图,锐角三角形ABC中,∠C=45°,N为BC上一点,NC=5,BN=2,M为边AC上的一个动点,则BM+MN的最小值是________.
网友回答
解析分析:先作点N关于AC的对称点N′,由两点之间线段最短可知BN′即为BM+MN的最小值,根据对称的性质可知N′C=NC=5,∠BCN′=90°,再利用勾股定理即可求出BN′的长.
解答:解:如图所示,先作点N关于AC的对称点N′,由两点之间线段最短可知BN′即为BM+MN的最小值,根据对称的性质可知N′C=NC=5,∠ACB=∠ACN′=45°,即∠BCN′=90°,在Rt△BCN′中,BN′===.故