解答题已知数列{an}的相邻两项an,an+1是关于X的方程.x2-3nx+bn=0的两根,设cn=,且a1=1.
(I)求数列{cn}的通项公式;
(II)设Sn是数列{an}的前〃项的和,问是否存在常数λ,使得bn-λSn>0对任意n∈N都成立,若存在,求出A的取值范围;若不存在,请说明理由.
网友回答
解:(I)由于an,an+1是关于X的方程.x2-3nx+bn=0的两根,所以,所以
∵cn=,∴,∴,又,
所以列?是首项为 ,公比为的等比数列,∴
(II)由题意,,∴,
①当n为正奇数时,由上式得对任意正奇数n都成立,∴λ<2
②当n为正偶数时,由上式得对任意正偶数n都成立,∴
综上所述得,存在常数λ,使得bn>λSn对?n∈N*都成立,λ的取值范围为λ<2解析分析:(I)由于an,an+1是关于X的方程.x2-3nx+bn=0的两根,所以从而得出数列?是首项为 ,公比为的等比数列,故可求{cn}的通项公式;(II)?要使bn-λSn>0,对?n∈N*都成立,下面对n进行分类讨论:①当n为正奇数时,②当n为正偶数时,分别求得λ的取值范围,最后综上所述得到,存在常数λ,使得bn-λSn>0对?n∈N*都成立,λ的取值范围.点评:本小题主要考查等比关系的确定、数列的求和、不等式的解法、数列与函数的综合等基础知识,考查运算求解能力与转化思想.属于中档题.