解答题已知函数f(x)=Acos(ωx+?)(A>0,ω>0,)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2)
(1)求函数f(x)的解析式;
(2)若锐角θ满足,求f(2θ)的值.
网友回答
解:(1)由题意可得A=2…(1分)
即T=4π,…(3分)
,f(0)=1
由且,得
函数
(2)由于且θ为锐角,所以
f(2θ)=
==解析分析:(1)通过函数的图象,直接求出A,T然后求出ω,利用函数经过(0,1)结合?的范围求出?的值,即可求函数f(x)的解析式;(2)利用锐角θ满足,求出,然后利用两角和的正弦函数求f(2θ)的值.点评:本题考查三角函数的解析式的求法,两角和与差的三角函数的应用同角三角函数的基本关系式的应用,考查计算能力.