已知椭圆的离心率为.
(1)求此椭圆的方程;
(2)若直线x-y+m=0与已知椭圆交于A,B两点,P(0,1),且|PA|=|PB|,求实数m的值.
网友回答
解:(1)由题意,,∴b=1,
∴椭圆的方程为;
(2)设A(x1,y1),B(x2,y2),则
直线x-y+m=0与已知椭圆方程联立,消去y可得
∴x1+x2=-
∴y1+y2=x1+x2+2m=
∴AB的中点坐标为(-)
∵R(0,1),且|RA|=|RB|,
∴
∴
解析分析:(1)利用椭圆的离心率,建立方程,求出b的值,即可得到椭圆的方程;(2)直线方程与椭圆方程联立,利用韦达定理确定AB的中点坐标,利用R(0,1),且|RA|=|RB|,可得斜率之间的关系,从而可得结论.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.