解答题已知函数f(x)=1nx-ax.(Ⅰ)若f(x)的最大值为1,求a的值;(Ⅱ)设

发布时间:2020-07-09 03:48:19

解答题已知函数f(x)=1nx-ax.
(Ⅰ)若f(x)的最大值为1,求a的值;
(Ⅱ)设l是函数f(x)=1nx-ax图象上任意一点的切线,证明:函数f(x)=1nx-ax的图象除该点外恒在直线l的下方.

网友回答

解:(Ⅰ)易知,函数f(x)的定义域为(0,+∞),
∵,①当a≤0时,f′(x)≥0,∴函数f(x)单调递增,因此函数在(0,+∞)上无最大值,不符合题意,应舍去;
②当a>0时,,令f′(x)=0,则.
当时,f′(x)>0,函数f(x)单调递增;当时,f′(x)<0,函数f(x)单调递减.
∴当时,函数f(x)取得极大值,也即最大值.
∴=1,即,解得.
(Ⅱ)设P(x0,lnx0-ax0)是曲线f(x)=lnx-ax的图象上的任意一点,则过点P的切线的斜率为,
∴切线为,化为y=g(x)=,
令h(x)=g(x)-f(x)=-(lnx-ax),
∴h′(x)==,令h′(x)=0,解得x=x0.
当0<x<x0时,h′(x)<0,函数h(x)单调递减;当x>x0时,h′(x)>0,函数h(x)单调递增.
因此当x=x0时,函数h(x)取得最小值,∴h(x)≥h(x0)==0,
∴g(x)≥f(x),函数f(x)=1nx-ax的图象除切点外恒在直线l的下方.解析分析:(Ⅰ)先求出导数,对a分类讨论即可得出;(Ⅱ)利用导数的几何意义求出切线的斜率,进而得到切线的方程g(x)=0,构造函数h(x)=g(x)-f(x),利用导数证明h(x)的最小值≥0即可.点评:熟练掌握利用导数研究函数的单调性极值等性质、分类讨论的思想方法是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!