设函数.(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)单调区间.

发布时间:2020-07-31 13:52:04

设函数.
(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)单调区间.

网友回答

解:因为,所以.
(Ⅰ)当a=1时,,,
所以f(0)=1,f'(0)=1.
所以曲线y=f(x)在点(0,f(0))处的切线方程为x-y+1=0.…(4分)
(Ⅱ)因为,…(5分)
(1)当a=0时,由f'(x)>0得x<0;由f'(x)<0得x>0.
所以函数f(x)在区间(-∞,0)单调递增,在区间(0,+∞)单调递减.…(6分)
(2)当a≠0时,设g(x)=ax2-2x+a,方程g(x)=ax2-2x+a=0的判别式△=4-4a2=4(1-a)(1+a),…(7分)
①当0<a<1时,此时△>0.
由f'(x)>0得,或;
由f'(x)<0得.
所以函数f(x)单调递增区间是和,
单调递减区间.…(9分)
②当a≥1时,此时△≤0.所以f'(x)≥0,
所以函数f(x)单调递增区间是(-∞,+∞).…(10分)
③当-1<a<0时,此时△>0.
由f'(x)>0得;
由f'(x)<0得,或.
所以当-1<a<0时,函数f(x)单调递减区间是和,
单调递增区间.…(12分)
④当a≤-1时,此时△≤0,f'(x)≤0,所以函数f(x)单调递减区间是(-∞,+∞).…(13分)
解析分析:(I)先求导数f'(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.(II)对字母a进行分类讨论,再令f'(x)大于0,解不等式,可得函数的单调增区间,令导数小于0,可得函数的单调减区间.

点评:本题以三次函数为载体,主要考查函数单调性的应用、利用导数研究曲线上某点切线方程、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!