求函数f(x)=2x3-9x+1零点的个数为A.4B.3C.2D.1
网友回答
B
解析分析:利用导数法求出三次函数的两个极值点,并判断两个极值的符号关系,若同号,则函数有一个零点,若积为0,则函数有两个零点,若异号,则函数有三个零点.
解答:∵函数f(x)=2x3-9x+1
∴f′(x)=6x2-9
令f′(x)=0
解得x=
又∵f(-)?f()=-53<0
故函数f(x)=2x3-9x+1零点的个数为3个
故选B
点评:本题考查的知识点是根的存在性及根的个数判断,熟练掌握三次函数根的个数与极值符号的关系是解答的关键.