已知f(x)=sin(π-x)cos(2π-x)tan(-x+π)/cos(-π/2+x),求f(-

发布时间:2021-03-16 09:05:44

已知f(x)=sin(π-x)cos(2π-x)tan(-x+π)/cos(-π/2+x),求f(-31π/3)的值

网友回答

解f(x)=[sinxcos(-x)tan(-x)]/cos[-(π/2-x)]
=[-sinxcosxtanx]/cos(π/2-x)
=(-sin²x)/sinx
=-sinx
f(-31π/3)=-sin(-31π/3)=sin(31π/3)=sin(10π+π/3)=sinπ/3=√3/2
======以下答案可供参考======
供参考答案1:
sin(π-x)=sinx,
cos(2π-x)=cosx,
tan( -x+3/2π)=tan(π/2-x)=cotx=cosx/sinx,
cos( - π- x)=cos(π-x)=-cosx,
则f(x)=cos²x/-cosx=-cosx,
f(- 31/3 π)=-cos(-31/3π)=-cos(-π/3)=-cosπ/3=-1/2.
以上问题属网友观点,不代表本站立场,仅供参考!