已知函数f(x)=2sin(2x+φ),若f(α)=2,则的值为A.B.C.1D.与?和α有关
网友回答
A
解析分析:利用已知条件求得sin(2α+φ)=1,cos (2α+φ)=0,化简?等于2sin[2α+φ)+],利用两角和的正弦公式展开运算.
解答:∵函数f(x)=2sin(2x+φ),若f(α)=2,∴2=2sin(2α+φ),∴sin(2α+φ)=1,∴cos (2α+φ)=0,则=2sin[2(α+?)+φ]=2sin (2α+φ+)? =2[sin(2α+φ)cos+cos(2α+φ)sin]=2[1×+0×]=.? 故选 A.
点评:本题考查同角三角函数的基本关系的应用,诱导公式、两角和的正弦公式的应用,利用已知条件求得sin(2α+φ)=1,cos (2α+φ)=0 是解题的关键.