解答题已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,而数列{bn}的首项为1,bn+1-bn-2=0.
(1)求a1和a2的值;
(2)求数列{an},{bn}的通项an和bn;
(3)设cn=an?bn,求数列{cn}的前n项和Tn.
网友回答
解:(1)∵an是Sn与2的等差中项,
∴Sn=2an-2,∴a1=S1=2a1-2,解得a1=2,a1+a2=S2=2a2-2,解得a2=4;
(2)∵Sn=2an-2①,∴Sn-1=2an-1-2(n≥2)②,
①-②得:an=2an-2an-1,即,
∵a1≠0,∴,即数列{an}是等比数列.
∵a1=2,∴.
由已知得bn+1-bn=2,即数列{bn}是等差数列,
又b1=1,∴bn=b1+(n-1)d=1+2(n-1)=2n-1;
(3)由cn=an?bn=(2n-1)2n,
∴③,
∴④,
③-④得:.
即:=
∴.解析分析:(1)由an是Sn与2的等差中项得递推式,在递推式中分别取n=1和n=2即可求得a1和a2的值;(2)由(1)中的递推式和求得数列{an}是等比数列,由bn+1-bn-2=0推得数列{bn}是等差数列,则数列{an},{bn}的通项公式可求;(3)把an和bn代入cn=an?bn后直接利用错位相减法求和.点评:本题考查了等差数列和等比数列的通项公式,考查了错位相减法求数列的前n项和,求一个等差数列和一个等比数列的积数列的前n项和,常采用错位相减法.此题是中档题.