解答题已知
(1)证明:f(x)是定义域上的减函数;???(2)求f(x)的最大值和最小值.
网友回答
(1)证明:设2≤x1<x2≤6,则
因为x1-1>0,x2-1>0,x2-x1>0,
所以f(x1)-f(x2)>0,即f(x1)>f(x2).
所以f(x)是定义域上的减函数(5分)
(2)解:由(1)的结论可得,
∴f(x)的最大值为1,最小值为(5分)解析分析:(1)利用单调性的定义,取值,作差,变形,定号,即可证得;(2)由(1)函数的单调性,即可求f(x)的最大值和最小值.点评:本题以函数为载体,考查函数的单调性,考查函数的最值,解题的关键是利用单调性的定义证明函数的单调性.