填空题函数y=ax3-15x2+36x-24在x=3处有极值,则函数的递减区间为________.
网友回答
(2,3)解析分析:由y=ax3-15x2+36x-24,得y′=3ax2-30x+36,由函数y=ax3-15x2+36x-24在x=3处有极值,解得a=2.由此能求出函数的递减区间.解答:∵y=ax3-15x2+36x-24,∴y′=3ax2-30x+36,∵函数y=ax3-15x2+36x-24在x=3处有极值,∴27a-90+36=0,解得a=2.∴y′=6x2-30x+36.由y′=6x2-30x+36<0,得2<x<3.∴函数的递减区间为(2,3).故