解答题在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球.求:
(1)最多取两次就结束的概率;
(2)整个过程中恰好取到2个白球的概率;
(3)取球次数的分布列和数学期望.
网友回答
解:(1)由题意知,任取一球,取到红球的概率为=
任取一球,取到白球的概率为=
任取一球,取到蓝球的概率为=
∵如果取出蓝色球则不再取球,∴最多取两次就结束的概率为
++=
(2)设A={整个过程中恰好取到2个白球},Bi={第i次取到白球} Hi={第i次取到红球} Li={第i次取到蓝球}
则P(A)=P(B1B2)+P(H1B2B2)+P(B1H2B3)
=×++=
(3)设取球次数为X,则X的可能取值为1,2,3
P(X=1)==
P(X=2)=+=
P(X=3)==
随机变量X的分布列如下 ?? X123?? P 从而E(X)=1×+2×+3×=解析分析:(1)先分别求出任取一球,取到每种颜色的球的概率,因为取出蓝色球则不再取球,所以最多取两次就结束有两种情况,第一种,第一次取球,取到蓝球,第二种情况,第一次取球,取到红球或白球,第二次取球,取到蓝球,把两种情况的概率求出,再相加即可.(2)由(1)知任取一球,取到白球的概率为,取到蓝球的概率为,取到红球的概率为,而恰好取到2个白球?包括三个互斥事件,即(白,白,非白),(白,红,白),(红,白,白),分别计算它们的概率,最后相加即可(3)设取球次数为X,则X的可能取值为1,2,3,X=1即第一次就抓到蓝球,X=2即第一次不是蓝球,第二次是蓝球,X=3即第一次不是蓝球,第二次不是蓝球;分别计算它们的概率,列出分布列,由期望公式计算X的期望点评:本题考察了古典概型概率的求法,互斥事件有一个发生的概率和相互独立事件同时发生的概率计算,以及离散型随机变量的分布列及其期望的求法