已知数列{an}满足a1+2a2+3a3+…+nan=n(n+1)(n+2),则它的前n项和Sn=________.

发布时间:2020-07-31 14:54:38

已知数列{an}满足a1+2a2+3a3+…+nan=n(n+1)(n+2),则它的前n项和Sn=________.

网友回答


解析分析:由a1+2a2+3a3+…+nan=n(n+1)(n+2),知a1+2a2+3a3+…+(n-1)an-1=(n-1)n(n+1),所以nan=3n(n+1),即an=3n+3.由此能求出它的前n项和Sn.

解答:∵a1+2a2+3a3+…+nan=n(n+1)(n+2),①∴a1+2a2+3a3+…+(n-1)an-1=(n-1)n(n+1),②①-②,得nan=3n(n+1),∴an=3n+3.∴Sn=a1+a2+a3+…+an=(3×1+3)+(3×2+3)+(3×3+3)+…+(3n+3)=3(1+2+3+…+n)+3n==.故
以上问题属网友观点,不代表本站立场,仅供参考!