已知函数(1)判断f(x)的奇偶性并证明;(2)若f(x)的定义域为[α,β](β>α>0),判断f(x)在定义域上的增减性,并加以证明;(3)若0<m<1,使f(x

发布时间:2020-07-31 19:39:09

已知函数
(1)判断f(x)的奇偶性并证明;
(2)若f(x)的定义域为[α,β](β>α>0),判断f(x)在定义域上的增减性,并加以证明;
(3)若0<m<1,使f(x)的值域为[logmm(β-1),logmm(α-1)]的定义域区间[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,请说明理由.

网友回答

解:(1)由得f(x)的定义域为(-∞,-3)∪(3,+∞),关于原点对称.

∴f(x)为奇函数?????????????????????…(3分)
(2)∵f(x)的定义域为[α,β](β>α>0),则[α,β]?(3,+∞).
设x1,x2∈[α,β],则x1<x2,且x1,x2>3,
f(x1)-f(x2)==
∵(x1-3)(x2+3)-(x1+3)(x2-3)=6(x1-x2)<0,
∴(x1-3)(x2+3)<(x1+3)(x2-3)
即,
∴当0<m<1时,logm,即f(x1)>f(x2);
当m>1时,logm,即f(x1)<f(x2),
故当0<m<1时,f(x)为减函数;m>1时,f(x)为增函数.??????????????????????…(7分)
(3)由(1)得,当0<m<1时,f(x)在[α,β]为递减函数,
∴若存在定义域[α,β](β>α>0),使值域为[logmm(β-1),logmm(α-1)],
则有…(9分)

∴α,β是方程的两个解…(10分)
解得当时,[α,β]=,
当时,方程组无解,即[α,β]不存在.?????????????????…(12分)

解析分析:(1)先求得f(x)的定义域为(-∞,-3)∪(3,+∞),关于原点对称.再验证,从而可得f(x)为奇函数;(2)f(x)的定义域为[α,β](β>α>0),则[α,β]?(3,+∞).设x1,x2∈[α,β],则x1<x2,且x1,x2>3,作差f(x1)-f(x2)==,从而可知当0<m<1时,logm,即f(x1)>f(x2);当m>1时,logm,即f(x1)<f(x2),故当0<m<1时,f(x)为减函数;m>1时,f(x)为增函数.???????????????????(3)由(1)得,当0<m<1时,f(x)在[α,β]为递减函数,故若存在定义域[α,β](β>α>0),使值域为[logmm(β-1),logmm(α-1)],则有,从而问题可转化为α,β是方程的两个解,进而问题得解.

点评:本题以对数函数为载体,考查对数函数的奇偶性,考查函数的单调性,考查函数的定义域与值域,同时考查分类讨论的数学思想,综合性强.
以上问题属网友观点,不代表本站立场,仅供参考!