解答题如图,在空间六边形(即六个顶点没有任何五点共面)ABCC1D1A1中,每相邻的两边互相垂直,边长均等于a,并且AA1∥CC1.求证:平面A1BC1∥平面ACD1.
网友回答
证明:作正方形BCC1B1和CC1D1D,并连接A1B1和AD.
∵AA1CC1BB1DD1,且AA1⊥AB,AA1⊥A1D1,
∴ABB1A1和AA1D1D都是正方形,且ACC1A1是平行四边形.
故它们的对应边平行且相等.
∵△ABC≌△A1B1C1,∴A1B1⊥B1C1.
同理,AD⊥CD.
∵BB1⊥AB,BB1⊥BC,∴BB1⊥平面ABC.
同理,DD1⊥平面ACD.
∵BB1∥DD1,∴BB1⊥平面ACD.
∴A、B、C、D四点共面.
∴ABCD为正方形.
同理,A1B1C1D1也是正方形.
故ABCD-A1B1C1D1是正方体.
易知A1C1∥AC,
∴A1C1∥平面ACD1.
同理,BC1∥平面ACD1,
∴平面A1BC1∥平面ACD1.解析分析:在平面A1BC1内的两条相交直线BC1和A1C1,证明A1C1∥平面ACD1,BC1∥平面ACD1即可证明两个平面平行.点评:本题考查平面与平面平行的判定,考查学生逻辑思维能力,空间想象能力,是中档题.