已知:如图所示,Rt△ABC中,∠C=90°,∠ABC=60°,DC=11,D点到AB的距离为2,求BD的长.

发布时间:2020-07-30 05:22:51

已知:如图所示,Rt△ABC中,∠C=90°,∠ABC=60°,DC=11,D点到AB的距离为2,求BD的长.

网友回答

解:DE⊥AB于E,且DE=2,
在Rt△ABC中,
∵∠ABC=60°,
∴∠A=30°.
在Rt△ADE中,
∵DE=2,
∴AD=4,AE=,
∵DC=11,∴AC=11+4=15,
∴AB=
∴,
在Rt△DEB中,,
∴BD=14.
答:BD的长为14.
解析分析:根据DE求AD的长度,根据AC=AD+CD即可求AC的长度,∵∠A=30°,∴AE=DE=2,且根据AB=2BC,AB2-BC2=AC2即可求得AB的长度,∴BE=AB-AE,根据BD=即可求BD的长.

点评:本题考查了勾股定理的运用,考查了30°角在直角三角形中的运用,本题中巧妙地利用∠A=30°是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!