解答题已知函数.
(Ⅰ)若f(x)的定义域为[α,β](β>α>0),判断f(x)的单调性,并加以说明;
(Ⅱ)当0<m<1时,是否存在α,β,使得f(x)在区间[α,β](β>α>0)上的值域为[logmm(β-1),logmm(α-1)],若存在,求m的取值范围;若不存在,请说明理由.
网友回答
解:(Ⅰ)x<-3或x>3.由于f(x)的定义域为[α,β],则α>3.
设β≥x1>x2≥α,有,
故当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数.(4分)
(Ⅱ)若f(x)在[α,β]上的值域为[logmm(β-1),logmm(α-1)]
由(Ⅰ)知当0<m<1时,f(x)为减函数.
则
即又β>α>3
即α,β为方程mx2+(2m-1)x-3(m-1)=0的大于3的两个不同的实数根.
从而得.
故当时,存在满足题意条件的α,β.(13分)解析分析:(Ⅰ)通过对数的真数大于0,集合函数f(x)的定义域为[α,β],推出α的范围.直接利用函数的单调性判断函数的单调性,注意当0<m<1与m>1两种情况.(Ⅱ)通过f(x)在[α,β]上的值域为[logmm(β-1),logmm(α-1)],利用(Ⅰ)f(x)单调性.列出关系式,通过二次函数与方程的根的关系,确定m的范围,判断是否存在满足题意条件的α,β.点评:本题考查一元二次方程的根的分布与系数的关系,函数的值域,对数函数的单调性与特殊点,考查分析问题解决问题的能力.