解答题如图棱长是1的正方体,P、Q分别是棱AB、CC1上的点,且.
(1)求证:A1P⊥平面AQD;
(2)求直线PQ与平面AQD所成角的正弦值.
网友回答
证明:(1)平面AQD与侧棱B1B的交点是R,
显然,在正方形ABB1A1中
由
所以AR⊥A1P,
又AA1⊥平面ABCD,AP⊥AD,得A1P⊥AD,
∴A1P⊥平面AQD
(2)设A1P与AR交于点S,连接SQ,则∠PQS=θ即为PQ与平面AQD所成角.
在Rt△PQS中,,∴,
即直线PQ与平面AQD所成角的正弦值是.解析分析:(1)要证A1P⊥平面AQD,只需要证明A1P⊥AD,AR⊥A1P,利用三角形的全等可得AR⊥A1P,从而得证.(2)求直线PQ与平面AQD所成角的正弦值,关键是寻找斜线PQ在平面内的射影,由(1)易得A1P与AR交于点S,连接SQ,则∠PQS即为PQ与平面AQD所成角,从而可解.点评:本题的考点是直线与平面所成的角,主要考查线面垂直,考查线面角,关键是利用线面垂直的定义,寻找斜线在平面内的射影.