填空题符号[x]表示不超过x的最大整数,如,定义函数f(x)=x-[x],设函数g(x)=-,若f(x)在区间x∈(0,2)上零点的个数记为a,f(x)与g(x)图象交点的个数记为b,则的值是________.
网友回答
解析分析:先画出f(x)=x-[x]的图象,根据图象得出f(x)在区间x∈(0,2)上零点的个数以及f(x)与g(x)=-图象交点的个数,求出a和b的值得到积分上下限,再根据定积分的运算法则求解即可.解答:解:画出函数f(x)=x-[x]的图象.由图象可知若f(x)在区间x∈(0,2)上零点的个数为a=1,f(x)与g(x)=-图象交点的个数为b=4,=∫14(-)dx=(-)|14=-,故