甲,乙,丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图1,图2和图3,若s甲,s乙,s丙分别表示他们测试成绩的标准差,则A.s甲<s乙<s丙B.s甲<s丙<s乙C.s乙<s甲<s丙D.s丙<s甲<s乙
网友回答
D
解析分析:先分布求出甲,乙,丙三名运动员射击成绩的平均分,然后根据方差公式求出相应的方差,比较大小可得标准差的大小.
解答:甲的平均成绩为(7+8+9+10)×0.25=8.5,其方差为s甲2=0.25×[(7-8.5)2+(8-8.5)2+(9-8.5)2+(10-8.5)2]=1.25乙的平均成绩为7×0.3+8×0.2+9×0.2+10×0.3=8.5,其方差为s乙2=0.3×(7-8.5)2+0.2×(8-8.5)2+0.2×(9-8.5)2+0.3×(10-8.5)2=1.45丙的平均成绩为7×0.2+8×0.3+9×0.3+10×0.2=8.5,其方差为s丙2=0.2×(7-8.5)2+0.3×(8-8.5)2+0.3×(9-8.5)2+0.2×(10-8.5)2=1.05∴s丙2<s甲2<s乙2∴s丙<s甲<s乙故选D.
点评:本题主要考查了频率分布条形图,以及平均数、方差和标准差,同时考查了计算能力,属于基础题.