解答题已知函数f(x)=an-1x2+(1-an)x+an-1,(x>0,n≥2)(1

发布时间:2020-07-09 08:09:00

解答题已知函数f(x)=an-1x2+(1-an)x+an-1,(x>0,n≥2)
(1)若f(1)=0,a1=1,求数列{an}的通项公式
(2)若an>1,(n∈N*),至少存在一个正数x,使f(x)≤0成立,
求证:…(n∈N*)

网友回答

解:(1)f(1)=an-1+1-an+an-1=0?an=2an-1+1?an+1=2(an-1+1)
∴an+1=2n?an=2n-1,(n∈N*)
证明:(2)由韦达定理分析易知,方程f(x)=0有根则必有正根,∴只需△≥0即可
∴…
∴……解析分析:(1)根据f(1)=0,a1=1,可得an=2an-1+1,变形得an+1=2(an-1+1),从而求出数列{an}的通项公式;(2)由韦达定理分析易知,方程f(x)=0有根则必有正根,从而只需△≥0即可,然后利用等比数列求和公式可得……,证得结论.点评:本题主要考查了构造法求数列的通项公式,同时考查了韦达定理的运用和等比数列的求和,是一道数列与不等式综合的题,有一定的难度.
以上问题属网友观点,不代表本站立场,仅供参考!