解答题已知函数f(x)=asinxcosx+4cos2x,x∈R,.(1)求常数a的值

发布时间:2020-07-09 04:30:13

解答题已知函数f(x)=asinxcosx+4cos2x,x∈R,.
(1)求常数a的值;
(2)求函数f(x)的最小正周期和最大值.
(3)此函数如何由y=sinx变换得到?

网友回答

解:(1)函数f(x)=asinxcosx+4cos2x,x∈R,.
所以6=asincos+4cos2,6=,
解得a=4;????
(2)由(1)可知,f(x)=4sinxcosx+4cos2x=2sin2x+2cos2x+2=4sin(2x+)+2
所以函数的周期为:T==π,
因为x∈R,所以函数的最大值为:M=6.
(3)函数y=sinx向左平移,得到函数y=sin(x+),
纵坐标不变,横坐标变为原来的,得到函数y=sin(2x+)的图象,
横坐标不变,纵坐标伸长原来的4倍,得到函数y=4sin(2x+)的图象,
然后函数的图象向上平移2单位,得到y=4sin(2x+)+2的图象.解析分析:(1)直接利用,求出常数a的值;(2)利用(1)通过二倍角与两角和的正弦函数化简函数的表达式,通过周期公式求函数f(x)的最小正周期和最大值.(3)通过左加右减,伸缩变换,直接由y=sinx变换得到f(x)=4sin(2x+)+2的图象.点评:本题考查三角函数的化简求值,二倍角公式与两角和的三角函数的应用,函数的图象的变换,考查计算能力.
以上问题属网友观点,不代表本站立场,仅供参考!