解答题已知向量,其中a>0且a≠1,(1)当x为何值时,;(2)解关于x的不等式.

发布时间:2020-07-09 06:36:54

解答题已知向量,其中a>0且a≠1,
(1)当x为何值时,;
(2)解关于x的不等式.

网友回答

解:(1)因为,(2分)
得a2x-a2=0,即a2x=a2.(4分)
所以2x=2,即x=1,∴当x=1时,.(6分)
(2)∵,∴,∴.
所以a2x-a2<0,即a2x<a2.(10分)
当0<a<1时,x>1,当a>1时,x<1.
综上,当0<a<1时,不等式的解集为(1,+∞);
当a>1时,不等式的解集为(-∞,1).(14分)解析分析:(1)利用向量垂直的充要条件列出方程,解方程求出x的值.(2)利用向量模的平方等于向量的平方,将已知不等式平方展开,得到指数不等式;讨论底数与1的大小;利用指数函数的单调性求出解集.点评:本题考查向量垂直的充要条件、考查向量模的性质:模的平方等于向量的平方、考查指数函数的单调性与底数与1的大小有关.
以上问题属网友观点,不代表本站立场,仅供参考!