解答题用数学归纳法证明:l3+23+33+…+n3=(n∈N﹡).
网友回答
证明:①当n=1时,左边=1,右边=1,∴n=1时,等式成立.
②假设n=k时,等式成立,即
13+23+33++k3+(k+1)3
=
∴n=k+1时,等式成立.
综合①、②原等式获证.解析分析:应用数学归纳法证明问题,①验证n=1时命题成立;②假设n=k时,命题成立,从假设出发,经过推理论证,证明n=k+1时也成立,从而证明命题正确.点评:考查数学归纳法证明有关正整数命题的方法步骤,特别是②是关键,是核心,也是数学归纳法证明命题的难点所在,属基础题.