已知函数
(1)求函数f(x)的最小正周期.
(2)当时,求函数f(x)的单调减区间.
网友回答
解:(1)函数=sin(2x+θ)+cos(2x+θ)=2sin(2x+θ+)
∴T=π
(2)当θ=时,f(x)=2sin(2x+)
根据正弦曲线的递减区间知当2x+∈[2kπ+,2kπ+]
即x∈[kπ-,kπ]
∴函数的递减区间是[kπ-,kπ],(k∈z).
解析分析:(1)首先整理函数的式子,进行三角函数式的恒等变换,写出最简结果,用周期公式做出周期.(2)根据正弦曲线的递减区间,写出使得函数的角在这一个区间上,解出其中的x的值,求出函数的单调区间.
点评:本题考查三角函数的变换和三角函数的性质,这是一个非常适合作为高考题目的题,这种题目注意三角恒等变换时不要出错,不然后面的运算都会出错.