如图,在四棱锥E-ABCD中,底面ABCD是矩形,AB=2BC,P、Q分别为线段AB、CD的中点,EP⊥底面ABCD.
(1)求证:AQ∥平面CEP;
(2)求证:平面AEQ⊥平面DEP;
(3)若EP=AP=1,求三棱锥E-AQC的体积.
网友回答
解:(1)在矩形ABCD中,∵AP=PB,DQ=QC,∴AP∥CQ 且AP=CQ,
∴AQCP为平行四边形,∴CP∥AQ.∵CP?平面CEP,AQ?平面CEP,
∴AQ∥平面CEP.
(2)∵EP⊥平面ABCD,AQ?平面ABCD,∴AQ⊥EP.
∵AB=2BC,P为AB中点,∴AP=AD.连PQ,则ADQP为正方形.∴AQ⊥DP.
又EP∩DP=P,∴AQ⊥平面DEP.∵AQ?平面AEQ.∴平面AEQ⊥平面DEP.
(3)∵EP⊥平面ABCD,∴EP为三棱锥E-AQC的高,
∴=.
解析分析:(1)证明AQCP为平行四边形,可得CP∥AQ,从而证明AQ∥平面CEP.(2)先证明AQ⊥EP,利用ADQP为正方形可得 AQ⊥DP,从而证得AQ⊥平面DEP,进而得到平面AEQ⊥平面DEP.(3)EP为三棱锥E-AQC的高,△ACQ的面积等于?CQ?AD,代入三棱锥的体积公式进行运算.
点评:本题考查证明线面平行、线面垂直的方法,求三棱锥的体积,证明AQ⊥平面DEP 是解题的难点.