已知如图,斜三棱柱ABC-A1B1C1中,点D、D1分别为AC、A1C1上的点.(1)当等于何值时,BC1∥平面AB1D1?(2)若平面BC1D∥平面AB1D1,求的

发布时间:2020-07-31 18:52:52

已知如图,斜三棱柱ABC-A1B1C1中,点D、D1分别为AC、A1C1上的点.
(1)当等于何值时,BC1∥平面AB1D1?
(2)若平面BC1D∥平面AB1D1,求的值.

网友回答

解:(1)如图,取D1为线段A1C1的中点,此时=1,
连接A1B交AB1于点O,连接OD1.
由棱柱的性质,知四边形A1ABB1为平行四边形,所以点O为A1B的中点.
在△A1BC1中,点O、D1分别为A1B、A1C1的中点,
∴OD1∥BC1.
又∵OD1?平面AB1D1,BC1?平面AB1D1,
∴BC1∥平面AB1D1.
∴=1时,BC1∥平面AB1D1,

(2)由已知,平面BC1D∥平面AB1D1
且平面A1BC1∩平面BDC1=BC1,
平面A1BC1∩平面AB1D1=D1O.
因此BC1∥D1O,同理AD1∥DC1.
∴=,=.
又∵=1,
∴=1,即=1.
解析分析:(1)欲证BC1∥平面AB1D1,根据直线与平面平行的判定定理可知只需证BC1与平面AB1D1内一直线平行,取D1为线段A1C1的中点,此时=1,连接A1B交AB1于点O,连接OD1,OD1∥BC1,OD1?平面AB1D1,BC1?平面AB1D1,满足定理所需条件;(2)根据平面BC1D与平面AB1D1平行的性质定理可知BC1∥D1O,同理AD1∥DC1,根据比例关系即可求出所求.

点评:本题主要考查了直线与平面平行的判定,以及平面与平面平行的性质,考查空间想象能力、运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!