如图,是一个风筝的平面示意图,四边形ABCD是等腰梯形,E、F、G、H分别是各边的中点,假设图中阴影部分所需布料的面积为S1,其它部分所需布料的面积之和为S2(边缘外

发布时间:2020-07-29 23:52:54

如图,是一个风筝的平面示意图,四边形ABCD是等腰梯形,E、F、G、H分别是各边的中点,假设图中阴影部分所需布料的面积为S1,其它部分所需布料的面积之和为S2(边缘外的布料不计),则A.S1>S2B.S1<S2C.S1=S2D.不确定

网友回答

C
解析分析:连接BD,根据中位线的性质可得到△AFE∽△ABD,相似比为1:2,从而可求得其面积比,同理可求得△CGH,△BGF,△DEH分别与△BCD,△ABC,△ACD的面积比,此时就不难求得S1与S2的关系了.

解答:解:连接BD,根据E,F分别是AB,AD的中点,则EF是△ABD的中位线,EF∥BD,且EF=?BD,△AFE∽△ABD,且相似比是1:2,相似三角形的面积的比等于相似比的平方,因而△AFE的面积是△ABD面积的,同理,△CGH,△BGF,△DEH分别是△BCD,△ABC,△ACD面积的.则△AFE,△CGH,△BGF,△DEH是梯形ABCD的面积的,则S1=S2,故选C.

点评:本题主要考查了中位线定理,利用了三角形相似的性质,相似三角形的面积的比等于相似比的平方.
以上问题属网友观点,不代表本站立场,仅供参考!