直线l与抛物线y2=2px(p>0)交于A(x1,y1),B(x2,y2)两不同点:命题s:y1y2=-p2;命题t:直线l过抛物线的焦点,则s是t的A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件
网友回答
D
解析分析:根据直线过焦点,写出直线的方程,根据根和系数的关系得到结果,同理可以得到直线过抛物线的焦点.
解答:经过抛物线y2=2px(p>0)的焦点直线交抛物线于A(x1,y1),B(x2,y2)两不同点焦点坐标(,0)设直线为x-=ky y=k(x-) 分别代入A(x1,y1),B(x2,y2) 得到两个分别关于x,y的一元二次方程,用韦达定理得y 1y 2=-p2故s是t的充分条件,同理可以得到s是t的必要条件,故s是t的充要条件,故选D.
点评:本题考查充要条件问题,解题的关键是直线与抛物线之间的关系,利用方程联立得到方程,根据根和系数的关系得到结论.