设椭圆的两焦点为F1,F2,M为椭圆上任一点,P为△F1MF2的内心,连接MP并延长交椭圆长轴于N,则的值为A.B.C.D.
网友回答
D
解析分析:由于三角形的内心是三个内角的平分线的交点,根据三角形内角平分线性质定理把所求的比值转化为三角形边长之间的比值关系来求解.
解答:解:如图,连接PF1,PF2.在△MF1P中,F1P是∠MF1N的角平分线,根据三角形内角平分线性质定理,,同理可得则有,根据等比定理=设F1到MN的距离为d则===故选:D
点评:本题主要考查圆锥曲线的定义的应用,试题在平面几何中的三角形内角平分线性质定理、等比定理和圆锥曲线的定义之间的综合应用,在解决涉及到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口.