设f(x)=3ax-2a+1,若存在x0∈(-1,1),使f(x0)=0,则实数a的取值范围是A.B.a<-1C.D.
网友回答
C
解析分析:根据已知中函数f(x)=3ax-2a+1,若存在x0∈(-1,1),使f(x0)=0,根据函数零点存在定理,我们易得f(-1)?f(1)<0,进而得到一个关于实数a的不等式,解不等式即可得到实数a的取值范围.
解答:∵函数f(x)=3ax-2a+1为一次函数∴函数f(x)=3ax-2a+1在区间(-1,1)上单调,又∵存在x0∈(-1,1),使f(x0)=0,∴f(-1)?f(1)<0即(-3a-2a+1)?(3a-2a+1)<0解得故选C
点评:本题考查的知识点是函数的零点与方程根的关系,其中根据零点存在定理,结合已知条件得到一个关于实数a的不等式,是解答本题的关键.