若xy+yz+zx=0,则3xyz+x2(y+z)+y2(z+x)+z2(x+y)等于A.1B.0C.-1D.2

发布时间:2020-07-30 15:33:25

若xy+yz+zx=0,则3xyz+x2(y+z)+y2(z+x)+z2(x+y)等于A.1B.0C.-1D.2

网友回答

B
解析分析:方法一是先将原式分解得3xyz+x2y+x2z+y2z+y2x+z2x+z2y,提取公因式可得xy(x+y+z)+xz(x+y+z)+zy(x+y+z)=(x+y+z)(xy+yz+zx),结合已知可得,原式=0.方法二主要是将原式展开,然后将3xyz分成三项,提取公因式xy+yz+zx,从而得出结果.

解答:方法一:原式=3xyz+x2y+x2z+y2z+y2x+z2x+z2y=xy(x+y+z)+xz(x+y+z)+zy(x+y+z)=(x+y+z)(xy+yz+zx)又xy+yz+zx=0,故原式=0.故
以上问题属网友观点,不代表本站立场,仅供参考!