已知函数,当k=1时,对任意的实数x1,x2,x3,均有f(x1)=f(x2)=f(x3)=1,这样就存在以f(x1),f(x2),f(x3)为三边长的三角形.当k>1时,若对任意的实数x1,x2,x3,均存在以f(x1),f(x2),f(x3)为三边长的三角形,则实数k的最大值为________.
网友回答
4
解析分析:对任意的实数x1,x2,x3,均存在以f(x1),f(x2),f(x3)为三边长的三角形,说明|f(x1)-f(x2)|<f(x3)恒成立,从而转化为|f(x1)-f(x2)|的最大值小于f(x3)的最小值.根据函数f(x)的结构特点可求出其值域,进而求得要求最值.
解答:当k>1时,f(x)==1+,所以f(x)的值域为(1,1+].若对任意的实数x1,x2,x3,均存在以f(x1),f(x2),f(x3)为三边长的三角形,即|f(x1)-f(x2)|<f(x3)恒成立,又|f(x1)-f(x2)|的最大值小于,所以≤1,解得k≤4,又k>1,所以1<k≤4.故