解答题已知函数f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1.
(Ⅰ)若y=f(x)在x=-2时有极值,求y=f(x)表达式;
(Ⅱ)在(Ⅰ)的条件下,求y=f(x)在[-3,1]的最大值;
(Ⅲ)若函数y=f(x)在[-1,0]上单调递减,求实数b的取值范围.
网友回答
解:(I)由f(x)=x3+ax2+bx+c,得f'(x)=3x2+2ax+b
由题知
所以f(x)=x3+2x2-4x+5
(II)f'(x)=3x2+2ax+b=3x2+4x-4=(3x-2)(x+2),则x、f'(x)、f(x)的关系如下表.
x-3(-3,-2)-21f'(x)+0-0+f(x)8↑极大↓极小↑4∵f(x)极大=f(-2)=13,f(-3)=8,f(1)=4
∴f(x)在[-3,1]的最大值为13
(III)由题意知,f′(x)≤≤0在[-1,0]上恒成立,
由(I)知即f'(x)=3x2+-bx+b=3x2+b≤0在[-1,0]上恒成立,
利用二次函数的性质,有,
从而得b解析分析:(I)根据导数的几何意义及函数在极值点处的导数为0得到方程组,求出a,b,c的值.(II)求出导函数,列出x、f'(x)、f(x)的关系表,由表求出函数的最大值.(III)根据函数y=f(x)在[-1,0]上单调递减,令f′(x)≤≤0在[-1,0]上恒成立,利用二次函数的性质得到,求出b的范围.点评:本题考查利用函数的导数解决曲线的切线斜率问题;利用导数求函数的单调性问题及利用导数求函数的最值、极值问题.