(Ⅰ)已知函数.数列{an}满足:an>0,a1=1,且,记数列{bn}的前n项和为Sn,且.求数列{bn}的通项公式;并判断b4+b6是否仍为数列{bn}中的项?若

发布时间:2020-07-31 22:46:09

(Ⅰ)已知函数.数列{an}满足:an>0,a1=1,且,记数列{bn}的前n项和为Sn,且.求数列{bn}的通项公式;并判断b4+b6是否仍为数列{bn}中的项?若是,请证明;否则,说明理由.
(Ⅱ)设{cn}为首项是c1,公差d≠0的等差数列,求证:“数列{cn}中任意不同两项之和仍为数列{cn}中的项”的充要条件是“存在整数m≥-1,使c1=md”.

网友回答

解:(Ⅰ)因为,
所以,
即,,
即.(4分)
因为,
当n=1时,,
当n≥2时,,
所以.(6分)
又因为,
所以令,
则;
得到与t∈N*矛盾,
所以b4+b6不在数列{bn}中.(8分)
(Ⅱ)充分性:若存在整数m≥-1,使c1=md.
设cr,ct为数列{cn}中不同的两项,
则cr+ct=c1+(r-1)d+c1+(t-1)d=c1+(r+m+t-2)d=c1+[(r+m+t-1)-1]d.
又r+t≥3且m≥-1,所以r+m+t-1≥1.
即cr+ct是数列{cn}的第r+m+t-1项.(11分)
必要性:若数列{cn}中任意不同两项之和仍为数列{cn}中的项,
则cs=c1+(s-1)d,ct=c1+(t-1)d,
(s,t为互不相同的正整数)
则cs+ct=2c1+(s+t-2)d,令cs+ct=cl,
得到2c1+(s+t-2)d=c1+(l-1)d(n,t,s∈N*),
所以c1=(l-s-t+1)d,
令整数m=l-s-t+1,所以c1=md. (14分)
下证整数m≥-1
若设整数m<-1,则-m≥2.令k=-m,
由题设取c1,ck使c1+ck=cr(r≥1)
即c1+c1+(k-1)d=c1+(r-1)d,
所以md+(-m-1)d=(r-1)d
即rd=0与r≥1,d≠0相矛盾,所以m≥-1.
综上,数列{cn}中任意不同两项之和仍为数列{cn}中的项的充要条件是存在整数m≥-1,使c1=md.(16分)
解析分析:(Ⅰ)由题意知,,所以.再由题设条件可以导出,由此可知b4+b6不在数列{bn}中.(Ⅱ)先证充分性:若存在整数m≥-1,使c1=md.再证必要性:若数列{cn}中任意不同两项之和仍为数列{cn}中的项,则cs=c1+(s-1)d,ct=c1+(t-1)d.

点评:本题考查数列的性质和综合运用,难度较大.解题时要认真审题,仔细解答.
以上问题属网友观点,不代表本站立场,仅供参考!