若抛物线y2=2px(p>0)上一点M到直线和到对称轴的距离分别是10和6,则该抛物线的方程是_________
网友回答
y2=4x或y2=36x
解析分析:抛物线y2=2px(p>0)关于x轴对称,结合点M到对称轴的距离是6,得到M的纵坐标绝对值是6,代入抛物线方程得M点的横坐标为,再根据点M到直线的距离是10,得到=10,解之得p=2或p=18,即得该抛物线的方程.
解答:∵抛物线y2=2px(p>0)关于x轴对称,点M到对称轴的距离分别是6,∴M的纵坐标是6或-6,得点M(,±6),即M(,±6),又∵点M到抛物线的准线的距离是10,且p>0,∴=10,解之得p=2或p=18,所以该抛物线方程为y2=4x或y2=36x.故