已知椭圆的离心率为,且曲线过点
(1)求椭圆C的方程.(2)已知直线x-y+m=0与椭圆C交于不同的两点A,B,且线段AB的中点不在圆内,求m的取值范围.
网友回答
解:(1)∵,∴,∴a2=2b2①
曲线过,则②
由①②解得,则椭圆方程为.
(2)联立方程,消去y整理得:3x2+4mx+2m2-2=0
则△=16m2-12(2m2-2)=8(-m2+3)>0,解得③
,,
即AB的中点为
又∵AB的中点不在内,
∴
解得,m≤-1或m≥1④
由③④得:<m≤-1或1≤m<.
解析分析:(1)根据离心率为,a2=b2+c2得到关于a和b的一个方程,曲线过点,把点代入方程即可求得椭圆C的方程;(2)直线x-y+m=0与椭圆C交于不同的两点A,B,且线段AB的中点,联立直线和椭圆的方程,消元,得到关于x的一元二次方程,利用韦达定理求得AB的中点坐标,再根据该点不在圆内,得到该点到圆心的距离≥半径,求得m的取值范围.
点评:本小题主要考查直线与圆锥曲线等基础知识,考查数形结合的数学思想方法,以及推理论证能力、运算求解能力,直线与圆锥曲线相交问题,易忽视△>0,属中档题.